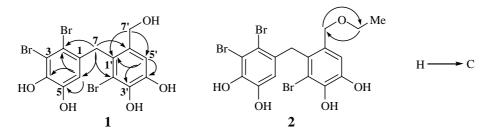
Two New Bromophenols from Red Alga Rhodomela confervoides^{††}

Xiao FAN^{1*}, Nian Jun XU¹, Jian Gong SHI^{2*}


¹Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 ²Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: Two new bromophenols were isolated from *Rhodomela confervoides*. Their structrues were elucidated as 2, 2', 3-tribromo-3', 4, 4', 5-tetrahydroxy-6'-hydroxymethyldiphenylmethane and 2, 2', 3-tribromo-3', 4, 4', 5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane by spectroscopic methods including IR, HREIMS, 1D and 2D NMR techniques.

Keywords: Red alga, Rhodomelaceae, Rhodomela confervoides, bromophenol.

Red algae of the family Rhodomelaceae were reported being rich in bromophenols¹⁻⁹. *Rhodomela. confervoides* is widely distributed in the gulf of Yellow Sea, China. 2,3-Dibromo-4,5-dihydroxybenzyl alcohol and 3,5-dibromo-4-hydroxybenzyl alcohol were isolated from this $alga^{10}$, while some chlorinated bromophenols and 2,3,2',3'-tetrabromo-4,5,4',5'-tetrahydroxydipenylmethane were identified by stepwise extraction followed by GC-MS⁵. In our recent systematic investigation of chemical constituents of *R. confervoides* collected at the coast of Qingdao, two new bromophenols **1** and **2** were obtained. We report here the isolation and structural elucidation of these compounds.

The air-dried and grounded red alga *R. confervoides* was extracted with 95% EtOH, the concentrated extract was suspended in water, and then partitioned with EtOAc. The

[†] This paper is decicated to Professor Xiao-Tian Liang on the occasion of his 80th birthday

^{*} E-mail: fxiao@ms.qdio.ac.cn; shijg@imm.ac.cn

Xiao FAN et al

EtOAc extract was chromatographed over silica gel eluting with a gradient increasing MeOH (0-100%) in CHCl₃. The fraction eluted by 20% MeOH in CHCl₃ was separated by size-exclusion chromatography over Bio-Beads SX-3 with CHCl₃-EtOAc (1:1) as eluent to yield a mixture which was further purified by reverse phase HPLC to yield **1** and **2**.

Compound 1 was obtained as yellowish white needles (Me₂CO), mp 127-129 °C. The IR spectrum (KBr) of **1** showed strong broadened absorption bands for hydroxyl groups at 3477 and 3425 cm⁻¹ and characteristic bands for aromatic rings at 1608, 1577, 1491 and 1469 cm⁻¹. Its EIMS spectrum gave the tri-brominated molecular ion peaks at m/z 502, 500, 498 and 496 with a abundance ratio of 1:3:3:1. The molecular formula was determined as $C_{14}H_{11}Br_3O_5$ by HREIMS at m/z 495.8134 (calcd. for $C_{14}H_{11}Br_3O_5$ 495.8157). In addition to a very broadened exchangeable signal integrated for four protons at δ 8.52, the ¹H NMR spectrum of **1** in acetone-d₆ showed only four singlets attributed to aromatic protons at δ 7.09 (s, 1H, H-5'), 6.08 (s, 1H, H-6), and two methylenes at δ 4.42 (s, 2H, H-7') and 4.12 (s, 2H, H-7). The ¹³C NMR and DEPT spectra of 1 (see Table 1) displayed 14 carbons assignable to two methylenes and two penta-substituted benzene rings with four oxygenated carbons which were recognized by their chemical shifts ($\delta > 142$ ppm). All of the above spectral data indicated that 1 possessed a diarylmethane structure with substitution groups of four hydroxyls, three bromines and one hydroxymethyl group. In the HMBC spectrum (see Figure 1), long range correlations from H₂-7 to C-2, C-6, C-2' and C-6' confirmed the diarylmethane structure of 1. The substituted patterns of the aromatic rings were unambiguously established by correlations from H-6 to C-2, C-4, C-5 and C-7, from H-5' to C-1', C-3', C-4' and C-7' and from H_2 -7' to C-1' and C-5'. Therefore, the structure of 1 was

No. –	1		2	
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
1		131.7 s		131.8 s
2		115.7 s		115.6 s
3		113.1 s		112.9 s
4		142.9 s		142.8 s
5		144.8 s		144.7 s
6	6.08 s	114.1 d	6.08 s	114.3 d
7	4.12 s	38.6 t	4.13 s	38.8 t
1'		127.7 s		128.8 s
2'		114.2 s		114.4 s
3'		142.3 s		142.7 s
4'		144.4 s		144.1 s
5'	7.09 s	114.4 d	7.00 s	114.3 d
6'		133.5 s		130.5 s
7'	4.42 s	62.1 t	4.25 s	70.7 t
O-CH ₂			3.40 q (7.0)	65.5 t
CH ₃			1.06 t (7.0)	14.7 q

Table 1¹H and ¹³C NMR data of compound 1 and 2^a

^a NMR data were measured in acetone- d_6 at 300 MHz for proton and at 75 MHz for carbon. δ_H , δ_C in ppm, the proton coupling constants (*J*) in Hz are given in parentheses. Assignments were based on DEPT, ¹H-¹H COSY, HMQC and HMBC experiments.

Two New Bromophenols from Red Alga Rhodomela confervoides 941

determined as 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-hydroxymethyldiphenyl methane.

Compound 2 was obtained as yellowish white needles (Me₂CO), mp 197-199 °C. Its EIMS spectrum showed the molecular ion peak cluster at m/z 530, 528, 526 and 524 (1:3:3:1), which indicated the presence of three bromine atoms in the molecule of 2. The molecular formula was determined as C₁₆H₁₅Br₃O₅ by HREIMS at m/z 523.8466 (calcd. for C₁₆H₁₅Br₃O₅ 523.8470). The IR and NMR spectra of 2 were very similar to those of 1 (see **Table 1**), except for appearances of characteristic signals attributed to a ethyloxyl group at $\delta_{\rm H}$ 1.06 (t, 3H, *J*=7.0 Hz) and 3.40 (q, 2H, *J*=7.0 Hz) and $\delta_{\rm C}$ 65.5 (t) and 14.7 (q) in the ¹H and ¹³C NMR spectra of 2. In addition, H₂-7' was shifted upfield from δ 4.42 in 1 to δ 4.25 in 2, while C-6' and C-7' were shifted from δ 133.5 and 62.1 in 1 to 130.5 and 70.7 in 2, respectively, by comparing the NMR data of 2 with those of 1. These evidences revealed that 2 is a 7'-ethyloxyl derivative of 1, which was confirmed by the HMBC experiment of 2 (see **Figure 1**). Thus, the structure of 2 was assigned as 2,2',3-tribromo- 3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane.

2 might be an artifact of 1 produced in the extraction procedure, because 2 was obtained by refluxing 1 with 95% ethanol at 60 °C for 72 h. The methyl derivative of 1 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-methoxy methyldiphenylmethane was isolated from the methanolic extract of red alga *R. larix*⁴, it could be an artifact also.

Acknowledgments

The authors are grateful to professor Ablez Zeper for mass spectra measurements, and financial support from the NNSF (Grant No.99-929-01-26), and National "863" Program (Grant No. 2001AA620403).

References

- 1. N. Katsui, Y. Suzuki, S. Kitamura, T. Irie, Tetrahedron, 1967, 23, 1185.
- 2. P. Saenger, M. Pedersen, K. S. Rowan, Phytochemistry, 1976, 15, 1957.
- 3. K. Kurata, T. Amiya, N. Nakano, Chem. Lett., 1976, (6), 821.
- 4. K. Kurata, T. Amiya, Chem. Lett., 1977, (12), 1435.
- 5. M. Pedersen, *Phytochemistry*, **1978**, *17*, 291.
- 6. K. Kurata, T. Amiya, Bull. Chem. Soc. Jpn., 1980, 53, 2020.
- M. Aknin, A. Samb, J. Mirailles, V. Costantino, E. Fattorusso, A. Mangoni, *Tetrahedron Lett.*, 1992, 33 (4), 555.
- K. Kurata, K. Taniguchii, K. Takashima, I. Hayashi, M. Suzuki, *Phytochemistry*, **1997**, 45 (3), 485.
- 9. L. Lundgren, K. Olsson, O. Theander, Acta Chem. Scand. B, 1979, 33 (2), 105.
- 10. J. S. Craigia, D. E. Gruening, Science, 1967, 157 (3792), 1058.

Received 27 September, 2002